A competitive measure to assess the similarity between two time series
ثبت نشده
چکیده
Time series are ubiquitous, and a measure to assess their similarity is a core part of many systems, including case-based reasoning systems. Although several proposals have been made, still the more robust and reliable time series similarity measures are the classical ones, introduced long time ago. In this paper we propose a new approach to time series similarity based on the costs of iteratively jumping (or moving) between the sample values of two time series. We show that this approach can be very competitive when compared against the aforementioned classical measures. In fact, extensive experiments show that it can be statistically significantly superior for a number of data sources. Since the approach is also computationally simple, we foresee its application as an alternative off-the-shelf tool to be used in many case-based reasoning systems dealing with time series. Source URL: https://www.iiia.csic.es/en/node/54536 Links [1] https://www.iiia.csic.es/en/staff/joan-serr%C3%A0 [2] https://www.iiia.csic.es/en/staff/josep-lluis-arcos [3] https://www.iiia.csic.es/en/bibliography?f[author]=741 [4] https://www.iiia.csic.es/en/bibliography?f[author]=742
منابع مشابه
An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملA competitive measure to assess the similarity between two time series
Time series are ubiquitous, and a measure to assess their similarity is a core part of many systems, including case-based reasoning systems. Although several proposals have been made, still the more robust and reliable time series similarity measures are the classical ones, introduced long time ago. In this paper we propose a new approach to time series similarity based on the costs of iterativ...
متن کاملA Competitive Measure to Assess the Similarity between Two Time Series
Time series are ubiquitous, and a measure to assess their similarity is a core part of many systems, including case-based reasoning systems. Although several proposals have been made, still the more robust and reliable time series similarity measures are the classical ones, introduced long time ago. In this paper we propose a new approach to time series similarity based on the costs of iterativ...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملA new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators
Plenty of researches have been carried out, focusing on the measures of distance, similarity, and correlation between intuitionistic fuzzy sets (IFSs).However, most of them are single-valued measures and lack of potential for efficiency validation.In this paper, a new vector valued similarity measure for IFSs is proposed based on OWA operators.The vector is defined as a two-tuple consisting of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017